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Abstract

The integrable third-order Korteweg–de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion
for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entirefamily
of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, non-local,
normal-form transformations introduced by Kodama in combination with the application of the Helmholtz-operator. These
Kodama–Helmholtz (KH) transformations are used to present connections between shallow water waves, the integrable
fifth-order KdV equation, and a generalization of the Camassa–Holm (CH) equation that contains an additional integrable
case. The dispersion relation of the full water wave problem and any equation in this family agree to fifth order. The travelling
wave solutions of the CH equation are shown to agree to fifth order with the exact solution.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We study the irrotational incompressible flow of a shallow layer of inviscid fluid moving under the influence of
gravity as well as surface tension. Previously, Dullin et al.[12] studied the case without surface tension, which in the
shallow water approximation leads to the Camassa–Holm (CH) equation. CH is the following 1+ 1 quadratically
nonlinear equation for unidirectional water waves with fluid velocityu(x, t),

mt + c0mx + umx + 2mux + Γuxxx = 0. (1)

Herem = u − α2uxx is a momentum variable, partial derivatives are denoted by subscripts, the constantsα2 and
Γ/c0 are squares of length scales andc0 = √

gh is the linear wave speed for undisturbed water at rest at spatial
infinity, whereu andm are taken to vanish. The limitα2 → 0 recovers the Korteweg–de Vries (KdV) equation[26].
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Eq. (1)was first derived by using asymptotic expansions directly in the Hamiltonian for Euler’s equations for
inviscid incompressible flow in the shallow water regime. It was thereby shown to be bi-Hamiltonian and integrable
by the inverse scattering transform in the work of Camassa and Holm[5]. Its periodic solutions were treated by
Alber et al. (see[1,2] and references therein). Before[5], families of integrable equations similar to(1) were known
to be derivable in the general context of hereditary symmetries by Fokas and Fuchssteiner[17]. However,Eq. (1)
was not written explicitly, nor was it derived physically as a water wave equation and its solution properties were
not studied before[5]. See[18] for an insightful discussion of how the integrable shallow waterequation (1)relates
to the mathematical theory of hereditary symmetries.

Eq. (1) was recently rederived as a shallow water equation by using asymptotic methods in three different
approaches by Fokas and Liu[15], Dullin et al.[12] and also by Johnson[23]. These three derivations used different
variants of the method of asymptotic expansions for shallow water waves in the absence of surface tension. We shall
derive an entire family of shallow water wave equations that are asymptotically equivalent toEq. (1)at quadratic
order in the shallow water expansion parameters. This is one order beyond the linear asymptotic expansion for the
KdV equation. The asymptotically equivalent shallow water wave equations at quadratic order in this family are
related amongst themselves by a continuous group of non-local transformations of variables that was first introduced
by Kodama[24,25].

Dullin et al. [12] focused on the integrability ofEq. (1)and its spectral properties. Its derivation from Euler’s
equation in the case without surface tension was briefly described. Here we present the necessary details of this
calculation. The present derivation also adds surface tension. In view of the many papers which have appeared
recently on weakly nonlinear shallow water models (i.e.[16,23]) we see our contribution to be the following.
By combining a non-local Kodama transformation with the application of the smoothing Helmholtz operator,
we derive several integrable water wave equations in the same asymptotically equivalent family. This family in-
cludes the CHequation (1), the fifth-order Korteweg–de Vries (KdV5) equation and the equation of Degasperis
and Procesi[9] which was recently discovered to be integrable in[10]. All these integrable equations are then
explicitly related to each other, again by means of a Kodama transformation. We clarify the differences among
the previous derivations of these equations. The equations are discussed with respect to their linear dispersion
properties.

In the context of water waves subject to surface tension, interest has recently focused on the KdV5 equation and
its solitary wave solutions. See[11] for a review. For Bond numbers 0< σ < 1/3 it has been shown that these
solutions are not true solitary waves which decay to zero at spatial infinity but instead they aregeneralized solitary
waves which are characterized by exponentially small ripples on their tail. See for example[4] for more explanation.
It has been shown by Lombardi[28] that these ripples are exponentially small in terms ofF − 1 whereF = c/c0
is the Froude number. Numerical experiments by Champneys et al.[7] suggest that in the full nonlinear water wave
problem there are no real solitary waves bifurcating for Bond numbers 0< σ < 1/3. For a rigorous proof, see
[32]. For Bond numbers larger than 1/3, one obtains depressions with negative velocity, rather than elevations with
positive velocity.

One may ask whether yet another model equation is needed, if the more rigorous, exact, or numerical results
described above are already available. Or in more general terms: Which is preferred? An exact solution of an
approximate model equation, or an approximate solution of an exact equation? Our point of view is: If the added
cost is small, why not take both? It might be useful to have an equation that gives, e.g., more accurate travelling
waves than KdV, without the need to go to much more elaborate models. Although we shall obtain less information
and accuracy than the sophisticated, beyond-all-order methods, we shall also pay less. Thus, one can improve the
description of the shape and speed of the travelling wave without having to resort to these more complicated models.
That they are still only an approximation to the true solution is, of course, taken for granted.

Our inclusion of surface tension has a similar motivation. AlthoughEq. (30) that we shall derive has some
drawbacks concerning the global properties of its dispersion relation for largek, it still gives improved descriptions
for smallk and smallσ. Moreover, the improved solutions are easily obtained and analyzed.

The Kodama–Helmholtz (KH) transformation developed here can be useful not only in the context of water
waves, but also in the many areas of science where the KdV equation appears as a model.
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Outline. Section 2recalls the standard dynamics for the shallow water wave elevation following Whitham[33].
We then use an approach based on the Kodama transformation to deriveEq. (1)with surface tension inSection 3.
Section 4explores the transformations employed to derive water wave equations. We discuss the class of equations
which may be related to each other via such transformation, and are, hence, asymptotically equivalent. As examples,
we discuss the relations ofEq. (1)to KdV and other integrable equations. We particularly discuss the relations to
KdV5, the fifth-order integrable equation in the KdV hierarchy, and to another integrable nonlinear equation recently
proposed by Degasperis and Procesi[9] and discovered to be integrable in[10]. Section 5compares the dispersion
relation of(1) with that of the full water wave equation. FinallySection 6shows that the travelling wave solutions
of (1) agree to fourth order with the exact travelling waves solutions of the full water wave problem.

2. The η equation

Our derivation ofEq. (1) proceeds from the physical shallow water system along the lines of Whitham[33].
Consider water of depthh = h0 + η(x, t), wherez = −h0 is the flat bottom andh0 the mean depth, so thatz = 0 at
the free surface in equilibrium. Denote byuh anduv the horizontal and vertical velocity components, respectively.
Thez-momentum equation is

Duv

Dt
= −g− 1

ρ
∂zp with p = σ̃

hxx

(1 + h2
x)

3/2
, (2)

whereg is the constant of gravity and̃σ the surface tension. At the free surface, the boundary condition is

Dη

Dt
= uv, where z = η. (3)

The irrotational velocityu(x, z, t) = ∇ϕ has horizontal and vertical velocity componentsuh = ϕx anduv = ϕz. The
velocity potentialϕmust satisfy Laplace’s equation in the interior.Eq. (3)yields the kinematic boundary condition
at the free surface,

ηt + ϕxηx = ϕz.

Eq. (2)can now be integrated to yield the dynamic boundary condition,

ϕt + 1

2
(ϕ2
x + ϕ2

z ) = −gh − 1

ρ
p.

The equations for a fluid are non-dimensionalized by introducingx = lxx
′, z = h0z

′, t = (lx/c0)t
′, η = aη′ and

ϕ = (glxa/c0)ϕ′, wherec0 = √
gh0. Being interested in weakly nonlinear, small-amplitude waves in a shallow

water environment, we introduce the small parametersε = a/h0 andδ2 = (h0/lx)
2 whereε ≥ δ2 > ε2 ≥ εδ2 ≥ δ4.

When we talk about the linear approximation we lump together the terms or orderε andδ2, because they are allowed
to be of the same order. Similarly, quadratic order means quadratic inε andδ2, hence includes terms of orderε2,
εδ2, δ4. Contrary to this convention the traditional designations third- or fifth-order KdV refer to the power ofδ,
and hence also the maximal number of derivatives in the linear terms. Upon omitting the primes and expanding the
pressure term up to orderε2δ2, the Euler equations and the boundary conditions at the free surface and at the bottom
are expressed as,

δ2ϕxx + ϕzz = 0 in − 1< z < εη, (4)

ηt + εϕxηx − 1

δ2
ϕz = 0 at z = εη, (5)

η+ ϕt + 1

2

(
εϕ2
x + ε

δ2
ϕ2
z

)
− σδ2ηxx = 0 at z = εη, (6)
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ϕz = 0 at z = −1, (7)

whereσ = σ̃/(h0ρc
2
0) is the dimensionless Bond number.

It is well known that variable transformations of the water wave problem yield the following decoupled equation
for the elevation,η,

ηt +ηx + 3
2εηηx + 1

6δ
2(1 − 3σ)ηxxx − 3

8ε
2η2ηx + εδ2( 1

24(23+ 15σ)ηxηxx

+ 1
12(5 − 3σ)ηηxxx)+ δ4 1

360(19− 30σ − 45σ2)ηxxxxx = 0. (8)

The derivation up to this order appears, for example, in[29], or more recently in[23] without surface tension.
Related systematic derivations of higher-order longwave equations were derived in[8,31].

3. Transformation to an integrable equation

Before embarking on its derivation, we shall discuss the transformation properties ofEq. (1). First, it is reversible,
i.e., it is invariant under the discrete transformationu(x, t) → −u(x,−t). Eq. (1)is also Galileancovariant. That
is, it keeps its form under transformations to an arbitrarily moving reference frame. This includes covariance under
transforming to a uniformly moving Galilean frame. However,Eq. (1)is not Galileaninvariant, even assuming that
the momentum,m, Galileo-transforms in the same way as velocity,u. In fact,Eq. (1)transforms under

t → t + t0, x → x+ x0 + ct, u → u+ c + u0, m → m+ c + u0 (9)

to the form

mt + umx + 2uxm+ (c0 + u0)mx + 2ux(c + u0)+ Γuxxx = 0. (10)

Thus,Eq. (1)is invariant under space and time translations (constantsx0 andt0), covariant under Galilean transforms
(constantc), and acquires linear dispersion terms under velocity shifts (constantu0). The dispersive termu0mx
introduced by the constant velocity shiftu0 �= 0 breaks the reversibility ofEq. (1).

Under scaling transformations ofx, t andu, the coefficients ofEq. (1)may be changed. However, such scaling
leaves the following coefficient ratios invariant,

C(uxuxx) : C(uuxxx) = 2 : 1, (11)

C(uxxt)C(uux) : C(uuxxx)C(ut) = 3 : 1, (12)

whereC(f) stands for the coefficient off in the scaled equation. It is pertinent to mention that the above ratios are
crucial in the integrability ofEq. (1). See[5,12] for discussions of this point.

Eq. (1) will emerge as being asymptotically equivalent toEq. (8) after two steps. First, we shall perform a
near-identity transformation

η = η(u) = u+ εf [u] + δ2g[u], (13)

relating the wave elevation and a “velocity-like” quantity,u. One should not regardu as the original fluid velocity,
because we will use a non-local term inf which is difficult to interpret in this context. Instead, we consideru as
an auxiliary quantity in which the equation becomes particularly simple. The quantityu agrees at leading order
with the fluid velocity and it transforms as a velocity under time reversal, spatial reflection and Galilean boosts.
To obtain the physically more meaningful quantityη one has to transform back, see below. The functionalsf and
g in the transformation(13) are to be chosen so that they generate the terms proportional touux, uxuxx, uuxxx and
uxxx in Eq. (1). Afterwards, we shall apply the Helmholtz operatorH = 1 − νδ2∂2

x, which generates theuxxt term.
As in [24] the functionalg[u] is proportional touxx andf [u] is a linear combination ofu2 and a non-local term
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ux∂
−1, where∂−1 denotes integration overx. Thus, including the parameterν, there are four coefficients in this KH

transformation. These shall be chosen so thatEq. (1)emerges, after a rescaling ofu, x andt.
With these choices,(13)becomes the Kodama transformation, which depends on three parametersα1, α2 andβ,

η = η(u) = u+ ε(α1u
2 + α2ux∂

−1u)+ δ2βuxx. (14)

Terms of degreen in the expansion parametersε and δ2 start contributing at degreen + 1 in the transformed
equation. Therefore, no terms of quadratic order inε andδ2 are needed in the transformation. Inserting the Kodama
transformation(14) into Eq. (8)for the height fieldη leads to the following terms in asymptotic order:

O(1) : ut + ux,
O(ε) : 2α1uut + 2α1uux + α2(uxt∂

−1u+ uxx∂
−1u+ ux∂−1ut + uux)+ 3

2uux,

O(δ2) : βuxxt + uxxx(β + 1
6 − 1

2σ),

O(ε2) : 9
2α1u

2ux + 3
2α2(u

2ux + uuxx∂
−1u+ u2

x∂
−1u)− 3

8u
2ux,

O(εδ2) : (23
24 + 5

8σ + 1
3(3α1 + 2α2)(1 − 3σ)+ 3

2β)uxuxx + ( 5
12 − 1

4σ

+ 1
6(2α1 + 3α2)(1 − 3σ)+ 3

2β)uuxxx + 1
6α2(1 − 3σ)uxxxx∂

−1u,

O(δ4) : (1
6β(1 − 3σ)+ 1

360(19− 30σ − 45σ2))uxxxxx. (15)

As before, we expand the time derivatives to linear order as

ut = −ux − 3
2εuux − 1

6δ
2(1 − 3σ)uxxx, (16)

uxt = −uxx − 3
2εu

2
x − 3

2εuuxx − 1
6δ

2(1 − 3σ)uxxxx, uxxt = −uxxx − 9
2εuxuxx − 3

2εuuxxx. (17)

This expansion generates higher order terms, leading to

O(1) : ut + ux,
O(ε) : 3

2uux,

O(δ2) : 1
6(1 − 3σ)uxxx, (18)

O(ε2) : (3
2α1 + 3

4α2 − 3
8)u

2ux, (19)

O(εδ2) : Ãuxuxx + B̃uuxxx, (20)

O(δ4) : 1
360(19− 30σ − 45σ2)uxxxxx, (21)

where in(20)we defined

Ã = 23
24 + 5

8σ + 1
2(2α1 + α2)(1 − 3σ)− 3β and B̃ = 5

12 − 1
4σ + 1

2α2(1 − 3σ).

The first step of the derivation is now complete. In the second step, applying the Helmholtz operatorH = 1−νδ2∂2
x

introduces the coefficientν and creates terms with two morex derivatives. However, the terms of orderO(ε2) are left
unchanged. These terms are proportional tou2ux and they must vanish forEq. (1)to emerge. Thus, the application
of the Helmholtz operator restores the neededuxxt term that had previously been eliminated. Alternatively, the same
Eq. (1)can be obtained by splitting the time derivative, that is, by partially substituting the time derivativeuxxt in
(15)by its asymptotic approximations(17), along the lines of Benjamin et al.[3] in their study of the BBM equation.

The orderO(ε2) coefficient in expression(19) will vanish, provided the parametersα1 andα2 are chosen to
satisfy

4α1 + 2α2 = 1. (22)
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The orderO(δ4) terms receive an additional contribution that arises from applying the Helmholtz operatorH =
1− νδ2∂2

x to the terms of orderO(δ2). The entire combination at orderO(δ4)must vanish, for the final equation to
possess no fifth-order derivative term,uxxxxx. This requirement determinesν as

ν = 1

60

19− 30σ − 45σ2

1 − 3σ
. (23)

In what follows, we shall consider the coefficientν to be given by this function of surface tension,σ. Note: this
removal of the highest order term was made possible by introducing the additional parameterν via the Helmholtz
operator. The remaining terms containing free parametersα2 andβ are of orderεδ2 and they combine additively as

(Ã− 9
2ν)uxuxx + (B̃ − 3

2ν)uuxxx.

To ensure equivalence to(1) except for scaling we need the relative coefficients to appear in the ratio(11), so that

(Ã− 9
2ν) : (B̃ − 3

2ν) = 2 : 1. (24)

In addition we also need to satisfy(12), so that

3
2ν : (B̃ − 3

2ν) = 3 : 1.

These two conditions implỹB = 2ν andÃ = 11ν/2. As a result we finally obtain the equation

ut − νδ2uxxt + ux + 3
2εuux − 1

2εδ
2ν(uuxxx + 2uxuxx)+ δ2(1

6 − ν − 1
2σ)uxxx = 0, (25)

which can be rewritten in terms ofm = u− νδ2uxx as

mt +mx + 1
2ε(umx + 2mux)+ δ2

(
1
6 − 1

2σ
)
uxxx = 0. (26)

Thus, the coefficients in the Kodama transformation(14) that yield this equation are

α1 = 7

20
− σ 1

5

2 − 3σ

(1 − 3σ)2
, (27)

α2 = −1

5
+ σ 2

5

2 − 3σ

(1 − 3σ)2
, (28)

β = 1

30
− σ 1

30

17− 30σ

1 − 3σ
. (29)

Returning to physical variables, whereu andϕx have units ofga/c0 = c0a/h0, followed by an additional scaling
of u → 2u, givesEq. (26)the canonical CH form,

mt + c0mx + umx + 2mux + Γuxxx = 0, (30)

in whichm = u − νh2uxx andΓ = c0h
2(1 − 3σ)/6. The parametersα2 andΓ in CH (1) are now understood in

terms of physical variables as

α2 = νh2 = h2 1

60

19− 30σ − 45σ2

1 − 3σ
, Γ = c0h

2

6
(1 − 3σ). (31)

The parameterΓ changes sign when the Bond numberσ crosses the critical value, 1/3. For later reference, we
record the value ofσ > 0 for whichα2 vanishes, as

σα = −1
3 + 2

15

√
30 � 0.39696> 1

3. (32)

In the special casec0 = Γ = 0,Eq. (30)is called “the peakon equation”. This equation supportspeakons as solitary
wave solutions whose derivative is discontinuous at the extremum. These solutions were introduced and discussed
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by Camassa and Holm[5]. The peakon equation has many exceptional mathematical properties that arise from its
interpretation as geodesic motion in the Euler–Poincaré variational framework, as explained in[21]. However, the
peakon equation cannot be derived as a water wave equation in a weakly nonlinear shallow approximation from
the Euler equation by the present technique. This is because neither a Galilean transformation, nor an appropriate
splitting can eliminate both of the linear dispersive terms inEq. (30)simultaneously. One is always left with a
residual linear dispersion.

Johnson[23] has recently derived the dispersive CHequation (30)as a shallow water wave equation by using the
same asymptotic expansion. However, two key steps in the asymptotic derivation are addressed in quite different
ways in[23] and here. Firstly, the ratios of the coefficients of the equation must be adjusted to ensure integrability.
In [23], this is achieved by using the height at which the velocity potential is evaluated as a free parameter. Instead
of the height, we use the free parameters in the Kodama transformation(14) to obtain the desired ratios.

Secondly, the fifth-derivative termuxxxxx of orderO(δ4)must be removed. The present approach allows the value
of the free parameterν in the Helmholtz operator to be chosen to cancel out this term. In[23], this term is simply
omitted. InSection 4we shall use our approach to show that the CH equation is asymptotically equivalent to the
KdV5 equation, which involves this fifth-order derivative.

In order to compare predictions in terms of physically measurable quantities, the solutions for the velocity-like
variableu must be transformed back to the elevation fieldη by using(14). However, the derivation not only used
the transformation(14), it also involved applying the Helmholtz operator. Therefore, one should verify that it is
sufficient to simply invert(14). Fortunately, when the inverse transformationu = u(η) of the same form as(14)
with u andη interchanged is substituted into the finalEq. (26), we find that the coefficients just reverse their signs.
We conclude that(1) is equivalent to the shallow water waveequation (8)up to and including terms of order
O(δ4).

4. The KH transformation

In the previous section, we transformed the shallow water waveequation (8)into the CHequation (1)by means of
a Kodama transformation(14)and an application of the Helmholtz-operator. Now we describe the class of equations
that can be derived from the shallow water waveequation (8)by any such sequence of transformations, which we
will refer to as KH transformation. This class contains (at least) four integrable equations, one of which is the CH
equation. Moreover, all equations in this class are not only related to(8); they are also related to each other by such
transformations and are therefore asymptotically equivalent.

Similar transformations have been used by Fokas and Liu[15] that included an additional term of the form
xut , but no Helmholtz-operator. In this case, the class of equations even includes the (third order) KdV equation.
Unfortunately, though, this term is not uniformly bounded, so we shall decline to use it. Its unboundedness is a
problem when transforming travelling wave solutions which move towardsx = ±∞. Moreover, use of the termxut
changes the dispersion relation.

4.1. Invariance of the dispersion relation

The Kodama transformation(14)does not change the dispersion relation. To see this, one may observe that only
terms linear inη or its derivatives produce linear terms in the transformed equation. Similarly, applying(14) to
nonlinear terms in an equation produces only nonlinear terms in the transformed equation. Therefore, in proving
invariance of the linear dispersion relation under(14), we may restrict to a transformationη = u+ εL(u) in which
L is a linear differential operator with constant coefficients and the linear equation to be transformed isηt = M(η).
To first order, we then haveut = M(u) and the full transformation gives

ut + εL(ut) = M(u+ εL(u)).
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Now the first-order equation may be used to eliminate the time derivatives which are not of order zero, thereby
yielding

ut + εL(M(u)) = M(u)+ εM(L(u)).
If M andL commute, as they always do when they have constant coefficients, the final answer isut = M(u).
Consequently, the Kodama transformation(14)leaves a linear equation unchanged. Note that including thexut term
in the transformation would in general cause the operators to no longer commute, so that the dispersion relation
would be changed, as previously claimed.

The second step of the transformation is the application of the Helmholtz operatorH = 1 − νδ2∂2
x. As we have

just seen, the Kodama transformation leaves the linear part of the equation unchanged. Applying the Helmholtz
operator to an equation does change the linear part, but it still leaves the dispersion relation unchanged. To see this,
let the linear part of the equation be given byut = M(u). The new equation isH(ut) = H(M(u)). If H andM
are linear with constant coefficients this givesH(u)t = M(H(u)) so that with the definitionm = H(u) we obtain
mt = M(m), which has the same dispersion relation. This does not hold, however, if we truncate higher order terms
in H(M(u)). If we truncate, then the dispersion relation will agree up to the order of truncation. For example, the
dispersion relation for(1) is a rational function, which differs from the polynomial dispersion relation obtained
from (8). However, by the above argument the two dispersion relations agree up to the desired order.

4.2. Range of the KH transformation

We now investigate which equations may be transformed into each other by a KH transformation. The class
of equations that (under some additional conditions to be derived) may be transformed into each other by KH
transformations is given by

F(ut, ux, uxxx, uxxt, uxxxxx, uux)+G(u2ux, uuxxx, uxuxx) = 0, (33)

whereF andG are linear and the coefficients ofut , ux, uux, uxxx are non-zero. This means that each equation has
a KdV-kernel. In addition, we assume that the terms are ordered as in the previous section: Everyu has weightε
and everyx (or t) derivative has weightδ. However, for simplicity, we do not explicitly display the weights in the
following, even though they are used for truncation at the usual order. The general procedure consists of two parts.
In the first part the coefficients inF are normalized in three steps. In the second part the Kodama transformation
is used to adjust the terms inG. The details of the calculation are similar to those of the previous section and are
therefore not given.

Equations are considered to be equivalent when they differ only by a transformation of the form

(t, x, u) → (τt, ξx− κt, νu). (34)

Scaling ofu, t, and the equation allow one to set the coefficients ofux, ut , anduux to arbitrary non-zero values.
After such a scaling, the equation takes the form:

ut + ux + uux + f3uxxx + f4uxxt + f5uxxxxx + g1u
2ux + g2uuxxx + g3uxuxx = 0. (35)

The next step is to remove theuxxt term by eliminating thet derivatives using the equation itself. This operation
produces an equation of the form,

ut +ux + uux + (f3 − f4)uxxx + (f5 − f4(f3 − f4))uxxxxx + g1u
2ux

+(g2 − f4)uuxxx + (g3 − 3f4)uxuxx = 0. (36)

In the third step, the coefficients ofuxxx anduxxxxx are normalized using(34) again, while keeping the coefficients
of ut , ux, uux all fixed at unity. Firstξ is used to normalize the ratio between the coefficients ofuxxx anduxxxxx

to ±1, assuming that both are non-zero. The relative sign of these coefficients cannot be changed. Dividing the
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equation byτ allows both coefficients to be set to unit magnitude. In order to keep the other coefficients in the linear
functionF equal to unity, the special transformation of the form(34) reads(t, x, u) → (τt, ξx + (τ − ξ)t, ξu/τ).
The above three steps (transformation(34) to find (35), elimination ofuxxt to find (36) and again transformation
(34) to find (37)) can be performed for any equation in the class(33). Therefore, we shall only be concerned with
the equivalence under Kodama transformation of equations of the form

ut + ux + f̃6uux + f̃3uxxx + f̃5uxxxxx + g̃1u
2ux + g̃2uuxxx + g̃3uxuxx = 0, (37)

wheref̃6 = 1, f̃3 = 1, or 0, andf̃5 = ±1, or 0.f̃3 = 0 appears whenf3 = f4 in (35). The parameter̃f6 is kept in
the notation to trace the influence of theuux term. The terms in the linear functionF are unchanged by the Kodama
transformation because such linear terms are unchanged by a near identity transformation anduux is the lowest
order nonlinearity. Therefore two equations can only be equivalent if their normalized coefficientf̃5 agrees. Recall
thatuxxt has already been eliminated, so that if, e.g., the above steps are applied to the CH equation, the resulting
equation does possess a non-zero fifth derivative term.

The terms in the linear functionG in (33)can be adjusted by the Kodama transformation. This generates coeffi-
cients,

ĝ1 = 1
2(g1 + f̃6(2α1 + α2)), ĝ2 = g2 + 3α2f̃3, ĝ3 = g3 + 3f̃3(2α1 + α2)− 2βf̃6. (38)

The ĝi are linear in the coefficientsα1, α2, andβ of the Kodama transformation. A sufficient condition for the
solvability of this linear system is̃f3f̃

2
6 �= 0. Hence, if the coefficients ofuxxx anduux in (37) are non-zero, then

any value ofĝi can be achieved by some Kodama transformation. Since the coefficient ofuux in (33) is assumed
to be non-zero the only additional condition isf̃3 = f3 − f4 �= 0 in (35). Note that this condition was already
necessary in order to obtain(37). For example, any equation with positive relative sign off̃3 and f̃5 in (37) is
equivalent to the water waveequation (8)with σ = 0. In particular, this shows that the integrable KdV5 can be
obtained, see[27]. Similarly, different higher-order, but non-integrable, extensions of the KdV equation can also
be obtained, e.g., those introduced by Champneys and Groves[6]. Notice that the relative sign of̃f3 andf̃5 in (37)
is negative for 1/3 < σ < σα, see(32). The conditionf̃3 = 0 appears forσ = 1/3, while f̃5 = 0 for σ = σα
� 0.39696.

To arrive at equations with auxxt term, the Helmholtz operator is applied. The Helmholtz operator fits nicely
into the above procedure, because it is the inverse of the elimination of theuxxt term, at the order considered.
More precisely, if the Helmholtz operator 1− f4∂

2
x is applied to(36) thenEq. (35)is recovered. Therefore, each

of the three steps leading to the normalized form(37) can also be inverted, and any two equations with equalf̃5
are asymptotically equivalent. The CH equation hasf̃5 = sign(α2Γ), even thoughf5 = 0 originally. Moreover,
f̃3 = sign(Γ), so that the relative sign is that ofα2. From these equations, it follows that the vanishing off̃3 implies
the vanishing of̃f5. This is not true in the water wave equation. That is,σ = 1/3 does not make the coefficient of
uxxxxx vanish. This explains why the CH equation is not a good model forσ = 1/3.

In general, all the terms in the linear functionG in Eq. (33)may be removed by a Kodama transformation.
However, it is not possible in general at the same time to remove the fifth-order derivative. One may, however, trade
the fifth-order derivative for theuxxt term. Therefore, possibly the simplest representative equation in the class(33)
has the form:

ut + ux + uux + uxxx + κuxxt = 0,

where small positive/negativeκ gives the different signs for̃f5. The case with positiveκ results from the BBM
equation of Benjamin et al.[3] by a Galilean transformation and velocity shift (which is not included in the
transformation group(34)). It is known that the BBM equation is not integrable. Thus, the integrable CH equation
arises as a KH near-identity transformation of the non-integrable BBM equation, after a Galilean transformation
and velocity shift.
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4.3. Examples

4.3.1. Asymptotic equivalence of CH and KdV5 equation
The previous section constructs a transformation from the water wave equation to the CH equation. The general

argument of this section shows that it is also possible to transform the CH equation, for example, into the KdV5
equation. To this end, we first expand the time derivative in theuxxt-term using the equation itself and then apply a
transformation of the form

u = v+ ε(α1v
2 + α2vx∂

−1v)+ δ2βvxx. (39)

Choosing the values in this Kodama transformation as

α1 = α2

Γ
, α2 = 2

α2

Γ
, β = 2α2, (40)

transforms the CHequation (1)into the integrable KdV5 equation

vt + c0vx + 3vvx + 5(vvxxx + 2vxvxx)α
2 + 15

2

α2v2vx

Γ
+ Γ(α2vxxxxx + vxxx) = 0. (41)

We conclude that(1) is asymptotically equivalent to the integrable KdV5 equation, and both of them are equivalent
to (8) at orderO(δ4). However, the equivalence of(1) to the KdV5 equation breaks down in the limitΓ → 0,
because both the transformation and the resulting equation are singular in the limitΓ → 0. Therefore, the peakon
equation cannot be transformed into KdV5.

Using the additional parameterν supplied by the Helmholtz operator allows for the removal of the highest order
term while preserving the dispersion relation, which is unchanged by applying a linear operator to the equation.
One advantage of the CH equation over the asymptotically equivalent KdV5 equation is that it is numerically easier
to integrate because it does not contain the fifth derivative. This is in accordance with the general smoothing effect
of the Helmholtz operator.

Different variants of higher order KdV equations have been derived in the literature. In this context, we mention
[6], who obtained a fifth-order KdV equation by expanding the variational formulation of the water wave problem.
Again, their equation is asymptotically equivalent to CH by a certain Kodama transformation. From our point
of view, however, the virtue of the power of the Kodama transformation is that it allows one to select integrable
equations as the model equation. The equation derived in[6] is not known to be integrable.

4.3.2. Asymptotic equivalence to the b-equation
Recently a new variant of(1) has been introduced by Degasperis and Procesi[9] as

mt + umx + buxm = c0ux − Γuxxx, (42)

whereb is an arbitrary parameter. The casesb = 2 and 3 are special values for this equation. The caseb = 2
restricts it to the integrable CH equation. The caseb = 3 is the DP equation of Degasperis and Procesi[9], which
was shown to be integrable in[10]. The two cases CH and DP exhaust the integrable candidates for(42), as may
be shown using either Painlevé analysis, as in[10], or the asymptotic integrability test, as in[9]. Theb-family of
equations (42)was also shown in[30] to admit the symmetry conditions necessary for integrability only in the cases
b = 2 for CH andb = 3 for DP.

We shall show here that the new integrable DP equation can also be obtained from the shallow water eleva-
tion equation (8)by an appropriate Kodama transformation. The derivation in the previous section is essentially
unchanged up toEq. (24). The two scaling relations(11) and (12)now read

(Ã− 9
2ν) : (B̃ − 3

2ν) = b : 1, 3
2ν : (B̃ − 3

2ν) = b+ 1 : 1.
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These two conditions imply

B̃ = ν
3

2

b+ 2

b+ 1
and Ã = ν

3

2

4b+ 3

b+ 1
.

The resulting Kodama transformation of the form(14)with coefficientsα′
1, α′

2, andβ′ are

α′
1 = α1 + 3Λ, α′

2 = α2 − 6Λ, β′ = β − (1 − 3σ)Λ, whereΛ = b− 2

b+ 1

45σ2 + 30σ − 19

360
.

Therefore, anyb �= −1 can be achieved by an appropriate Kodama transformation. Note that whenσ = σα, see
(32), thenα2 = 0, henceΛ = 0 is independent ofb. After this transformation(42) is obtained by further scaling
the new dependent variableu by the factorb + 1. See[22] for discussions ofEq. (42)in which b is treated as a
bifurcation parameter whenc0 = 0 andΓ = 0.

The valueb = −1 is excluded, not from a deficiency of the KH transformation, but because the termuux is not
removable in the linear functionF in Eq. (33). As we have shown above, the KH transformation does not affect this
term, and so it cannot be removed from theη equation (8). That is, the caseb = −1 is not within the range of the
KH transformation.

We conclude that the detailed values of the coefficients of the asymptotic analysis at quadratic order hold only
modulo the KH transformations, and these transformations may be used to advance the analysis and thereby gain
insight. Thus, the KH transformations may provide an answer to the perennial question “Why are integrable equations
found so often, when one uses asymptotics in modeling?”

5. Dispersion relation

The interplay between the local and non-local linear dispersion in the CHequation (30)is evident in the relation
for its phase velocity,

ω

k
= c0 − Γk2

1 + α2k2
(43)

for waves with frequencyω and wave numberk linearized aroundu = 0. ForΓ < 0, short waves and long waves
both travel in the same direction. Long waves travel faster than short ones (as required in shallow water), provided
Γ < 0. Then the phase velocity lies inω/k ∈ (c0 − Γ/α2, c0]. At low wave numbers, the constant dispersion
parametersα2 andΓ both perform rather similar functions. At high wave numbers, however, the parameterα2

properly keeps the phase velocity of the wave from becoming unbounded, and the dispersion relation is similar to
the original dispersion relation for water waves, provided that the surface tension vanishesσ = 0. The remarkably
accurate linear dispersion properties close tok ≈ 0 give the CH equation a clear advantage over the KdV equation
(providedσ is not close to 1/3, seeFig. 1).

For the peakon equation,c0 = Γ = 0 and linear dispersion is absent. For non-vanishing surface tension, the true
dispersion relation for shallow water waves is unbounded for large wave numbers, whereas the dispersion relation
of Eq. (1)saturates to the asymptotic valuec0 − Γ/α2.

Consequently,(1) is inferior to KdV5 for non-zero surface tension, with respect to travelling wave solutions
exhibiting small tail waves. Unboundedness of the linear dispersion relation of KdV5 for high wave numbers allows
resonances to occur between a supercritical solitary wave and high-wavenumber linear waves. These resonances
give rise to exponentially small ripples at the tails of the solitary wave, in accord with the water wave solution
of the full Euler equation. See, for example[4,11,20,28]for more discussion and analysis of these fascinating
resonances. Nonetheless, travelling wave solutions of CH and KdV5 are asymptotically equivalent, and they both
agree asymptotically with travelling wave solutions of the full water wave problem, seeSection 6.

The connections to the physical parametersα = α(σ) andΓ = Γ(σ) are defined inequations (31). The asymptotic
equation (30)was derived from the water wave equation by means of the KH transformation. As explained in
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Fig. 1. Normalised dispersion relations forσ = 0.0, 0.25, 0.35, 0.8 as a function ofhk. The full line is the exact phase speed(44); the dashed
line is the approximation(43)and the short dashed line is that of KdV5.

Section 4.1, the dispersion relation(43) matches the dispersion relation for water waves up to quintic order. In
comparison, the dispersion relation for water waves, when developed for small wave numberk yields

ω

c0k
=

√
1 + σh2k2

hk
tanhhk, (44)

ω

c0k
≈ 1 − 1

6(1 − 3σ)h2k2 + 1
360(19− 30σ − 45σ2)h4k4, (45)

ω

c0k
≈ 1 − 1

6(1 − 3σ)h2k2(1 − νh2k2). (46)

Therefore, the dispersion relations are in agreement up to fifth order in dimensionless wavenumberhk. For the
particular valueσ ≈ 0.069, the dispersion relations agree up to seventh order.

6. Travelling wave solutions

One may also ask how the solutions ofEq. (1)compare to the usual KdV solitons and to real water solitary waves.
An expansion of the form of the travelling wave in the full Euler equations is given by Grimshaw[19] and to higher
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order by Fenton[13].1 Recent results like[28,32] indicate that the problem of existence and uniqueness of solitary
waves for the true water wave problem (even withσ = 0) are very subtle. In the following we merely present a
formal argument, and just claim agreement of our soliton solution with theformal solution of the Euler equations
up to the orderεa2. The result given in[19] is normalized so that the highest point of the wave ats = 0 is unity.

By direct substitution of a series in sech2 into (26), one finds

u(s) = a sech2bs + 19
20εa

2 sech4bs,

whereb2 = 3aε/(4δ2) andc = 1+εa/2+(19/40)ε2a2 in s = x−ct. Applying the (inverse) Kodama transformation
gives

η(s) = a(1 + 1
2εa) sech2bs + 3

4εa
2 sech4bs.

For simplicity, we restrict the calculation to the case without surface tension, i.e.,σ = 0. After normalizing the
height at the crest to unity, we find perfect agreement up to orderεa2 with the exact result by Grimshaw[19].
This shows that the travelling wave solutions of(1) agree with those of the exact Euler equations up to the order
we are considering, which is the optimal result. In particular, the travelling waves are narrower and slower (in this
normalization) than the KdV soliton, in agreement with experimental findings of Weidman and Maxworthy[34].
The solution also agrees with the one found in[27] by solving the fifth-order KdV equation.
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